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ABSTRACT

Beamforming is a common technique used to improve speech in-
telligibility and listening comfort of hearing aids users in a noisy
environment. Traditional hearing aids beamforming algorithms re-
quire the a priori knowledge of the auditory of the listener, which
may not be available in real applications. Recent advances in elec-
troencephalography (EEG) offer a potential non-invasive solution to
this problem. The listener’s auditory is derived from the EEG sig-
nals through auditory decoding algorithms and can be used as an
input to the beamforming algorithms. In [1], a joint auditory de-
coding and adaptive beamforming algorithm framework by corre-
lating the envelope of beamforming output and the EEG signal was
proposed to improve the beamformer’s robustness against decoding
error. Consistent performance improvement was demonstrated on an
EEG database recorded on listeners with fixed . In this study, we
present the evaluation results of this joint formulation on a new EEG
dataset collected on subjects with dynamic switch. We demonstrate
not only the joint framework’s performance improvement against
decoding errors, but also its ability to capture listener’s dynamic
switch.

Index Terms— EEG signals, auditory , microphone array signal
processing, acoustic beamforming

1. INTRODUCTION

In modern hearing aids, speech intelligibility and listening comfort
can be significantly improved by exploiting the spatial diversity pro-
vided by the microphone array [2, 3]. In this regard, various binau-
ral beamforming techniques have been proposed in the past decades
[4–6]. However, these beamforming techniques usually require the a
priori knowledge of the auditory of listener, which may not be easily
obtained in a real world environment with multiple talkers. Recent
technology advance in electroencephalography (EEG) signal pro-
cessing offers a potential non-invasive solution for tracking listener’s
auditory in a complex environment, such as a cocktail party sce-
nario [7]. Based on the collected EEG signals from a scalp EEG
system, many computational models [8–10] have been proposed and
shown a reliable auditory decoding (AAD) performance in a multi-
talker environment [11–17].

Several latest studies have started incorporating the listener’s au-
ditory inferred from EEG signals as an input to speech enhance-
ment beamforming algorithms [16, 18]. However, directly utilizing
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the AAD results followed by beamforming algorithms requires addi-
tional source separation procedure, which itself is a very challenging
problem in a multi-talker environment. Recently a joint optimiza-
tion approach combining both AAD and beamforming has been pro-
posed [1]. This approach aims to balance auditory alignment, tar-
get speech distortion, noise and interference suppression, and this
joint approach eliminates the need to separate speech or its enve-
lope of each talker. In [1], this joint approach was evaluated on an
EEG database recorded on listeners without switch. It was shown
that the joint approach can achieve significantly reduced temporal
variation while maintaining a similar average beamforming perfor-
mance when compared to the separate decoding and beamforming
approach. However, the behavior of this approach in the case of
switch remains to be explored.

In this study, we present the evaluation results of the joint
approach [1] on a newly collected EEG dataset under the switch
conditions. The EEG signals are collected in a competing-talker,
noisy and reverberant environment where the listener dynamically
switch between talkers. Results confirm that the joint approach
is able to track switch in real time. Also, we use intelligibility-
weighted signal-to-interference ratio improvement (IW-SIRI) and
intelligibility-weighted spectral distortion (IW-SD) as performance
metrics [19] to measure interference suppression and target speech
distortion respectively.

2. PROBLEM FORMULATION

In this section, we briefly review the recently proposed joint ap-
proach [1]. Consider a noisy multi-talker scenario with K talkers,
a listener equipped with a pair of binaural hearing aids with M
microphones. One talker the listener attempts to listen to is referred
as the attended talker, and the other K − 1 talkers are referred as
unattended (interfering) talkers. In terms of the short-time Fourier
transform (STFT), microphone signals in the time-frequency domain
can be expressed as y(`, ω) =

∑K
k=1 hk(ω)sk(`, ω) + n(`, ω),

where y(`, ω) is the microphone signal at frame ` and frequency
band ω (ω = 1, 2, · · · ,Ω); hk(ω) is the acoustic transfer func-
tion (ATF) [2] between the k-th speech source and microphones and
sk(`, ω) is the corresponding speech signal in time-frequency do-
main; and n(`, ω) is the background noise.

The EEG signals of the listener are also recorded which will be
used to guide the beamformer design. By exploiting the information
of the listener from the recorded EEG signals, our goal is to design
a so-called beamformer w(ω) ∈ CM for each frequency band ω,
such that the final beamforming output z(`, ω) = wH(ω)y(`, ω)
preserving the attended talker’s speech signal and suppressing other
interfering speech signals and noise. The illustration of the consid-
ered EEG-assisted beamforming system diagram is shown in Fig.
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1. Notice that for adaptive beamforming, beamformer w(ω) will
change with time. Here for presentation simplicity, we first consider
a time period that w(ω) does not change and the adaptive rule for
updatingw(ω) is presented in Algorithm 1.

Fig. 1. Illustration of the EEG assisted beamforming system.

The key issue for the above-mentioned EEG-assisted beamform-
ing system is the way of incorporating EEG signals. Recent ad-
vances in EEG signal processing and its applications to AAD have
shown that low-frequency EEG signals (1-12Hz) have stronger cor-
relation with speech envelope of attended speech than the unattended
speech [8]. Based on this experimental observation, several AAD
models [10,20,21] were proposed to reconstruct the attended speech
envelope from EEG signals. In this regard, a potential way for de-
signing the joint AAD and beamforming system is to establish con-
nections between EEG signals and microphone signals through the
attended speech envelope.

Ideally, suppose the beamformer preserves the attended speech
and suppresses the noise and interferences; then the envelope of
beamforming output approximates the attended speech envelope,
which should have a strong correlation with the reconstructed at-
tended speech envelope. This leads to one of the criteria for design-
ing the beamformer by maximizing the Pearson correlation between
the reconstructed speech envelope (from EEG signals) and the enve-
lope of beamforming output. By balancing the noise reduction and
assignment, the joint AAD and beamforming formulation is given
as

min
{w(ω)},α

Ω∑
ω=1

w(ω)HR(ω)w(ω)︸ ︷︷ ︸
Noise Reduction

−µκ({w(ω)})︸ ︷︷ ︸
Attention Assignment

−γ‖α‖2︸ ︷︷ ︸
Sparsity

s.t. w(ω)Hhk(ω) = αk, ∀k, ω, (1a)

1Tα = 1, αk ≥ 0, ∀k. (1b)

In (1), R(ω) is the correlation matrix of noise at frequency band
ω, which is estimated from noise only time period, κ({w(ω)}) is
a smooth nonlinear function w.r.t. beamformer across all frequency
bands, which represents the Pearson correlation between the enve-
lope of beamforming output and the reconstructed attended speech
envelope (from EEG signal). The detailed mathematical expres-
sion of κ(·) can be found in [1] and we omit here due to space
limitation. Notice that there are two types of optimization variables
in (1), one is beamforming coefficients {w(ω)} and the other is
coefficients {αk}. These variables are coupled in linear constraints
(1a), which implies each talker’s speech signal at beamforming out-
put is restricted to be scaled by the corresponding αk. µ, γ ≥ 0
are user-defined trade-off parameters for balancing noise reduction
and auditory assignment, the term −γ‖α‖ together with constraint
(1b) enforces a sparse regularization for α. We also remark that

ATFs {hk(ω)} in (1a) can be replaced by relative transfer func-
tions (RTFs), which implies the beamforming output refers to one
reference microphone.

Problem (1) is a smooth nonconvex optimization problem, i.e.,
κ({w(ω)}) and−γ‖α‖ are nonconvex. By exploiting the separable
structure property of constraints in (1a), a computationally efficient
algorithm based on gradient projection method (GPM) is proposed
to solve it [1]. To adaptively update beamformer according the latest
EEG signals in real time, an adaptive implementation scheme is also
presented in [1]. The adaptive scheme is based on a sliding window
of fixed length, i.e., 20 seconds, and EEG signals within the sliding
window are used for updating the beamformer. Detailed steps of the
GPM based adaptive beamforming scheme is given in Algorithm 1.

Algorithm 1 GPM Based Adaptive Beamforming Scheme
1: for Sliding window index t = 0, 1, . . . , do
2: Reconstruct attended speech envelope from EEG signals;
3: Update the objective function of problem (1);
4: Specify the previous sliding window result as initial point;
5: Fixed number of GPM iterations;
6: Update {w(ω)} and α.
7: end for

3. EEG DATA COLLECTION

Seven listeners with normal hearing participated in the experiment
and all signed a written consent form before the experiment. Audi-
tory responses were recorded with a 64-channel Brain Vision EEG
system at a sampling frequency of 2500 Hz. The recorded signal
was filtered online by a high-pass filter with cutoff frequency of
0.1 Hz. Channel TP10 was set to be reference channel, and chan-
nels O1 and O2 were adjusted to record vertical and horizontal
eye movements. The TP10 channel is positioned behind right ear,
and channels O1 and O2 are positioned on the back side of the
head. Recordings were done in a sound-treated and semi-electrically
shielded sound booth. Same as in [1], a set of binaural audio stim-
uli were generated using a set of ATFs in a simulated noisy and
reverberant room (0.6s reverberation time). The background babble
noise was generated using sixteen loudspeakers distributed equally
on the circle 2 meters away from the subject. Each hearing aid had
2 microphones with 7.5mm spacing. Auditory stimuli at a loud but
comfortable level were presented by Presentation software (Neu-
robehavioral Systems Inc., Berkeley, CA, US) and delivered to the
subject’s ear through a set of Etymotic ER-3A insert earphones, and
such a system has been shown to eliminate stimulus transduction
artifact by grounded shielding of the electrical apparatus.

The experiment included two sets of experiments: the clean
speech and the switch experiments. We included clean speech
experiment to check if EEG recordings had robust auditory re-
sponse. Specifically, DSS was used to extract the consistent re-
sponse component, and the topographical map of the first DSS
component was examined empirically to make sure that it matched
typical auditory response topography. The stimuli included four
non-overlapping audio segments, each of 2 min long. Two of the
segments were narrated by male talker and the other two by fe-
male. For clean speech condition, the first audio segment narrated
by male talker was presented for three times, simulated by ATFs
to be a source from left. Then a second audio segment narrated by
female was presented for three times, which was simulated to be a
source from right. Both sources were 1 m away from the listener. A
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(a) AAD-LCMV (b) Joint Approach (c) IW-SIRI and IW-SD

Fig. 2. Performance for trials with average accuracy 80%. (Attention switched from male to female at 60s)

(a) AAD-LCMV (b) Joint Approach (c) IW-SIRI and IW-SD

Fig. 3. Performance for trials with average accuracy 63%. (Attention switched from male to female at 60s)

double-choice detailed question was visually presented to subjects
after each trial, and the subjects indicated their choice by pressing
either left or right arrow on the keyboard. The other two segments
was used to construct stimuli for switch condition. An audio mixture
was created by mixing the audio segment by male, simulated to be
the left source, and the audio segment by female simulated to be the
right source. Then a babble noise at a sound level 5 dB below the
speech signal was added to the mixture to create a cocktail party sce-
nario. During each trial, subjects were instructed to focus the male
talker for the first 60 s, switch their to the female talker after a 5-s
visual instruction on the screen, and remain their for the rest of the
trial. Three trials were presented for each subject. After each trial,
in the same way as described in clean speech condition, subjects
answered two comprehensive questions related to the segments they
were instructed to pay to, as a way to keep them motivated to attend
to the target talker.

4. EVALUATION RESULTS

In this section, we present the evaluation results of switch experi-
ment. The EEG signals collected under the babble noise condition in
Section 3 are used in the evaluation. As a baseline approach for per-
formance comparison purpose, we use auditory decoding followed
by a linearly constrained minimum variance (LCMV) beamformer,
or AAD-LCMV for brevity [16]. This approach firstly applies two
different LCMV beamformers to separate the two speech signals and
then decode the by comparing the Pearson correlations of the sepa-
rated speech signals with respect to the reconstructed speech enve-
lope. The decoded is finally used to perform a final LCMV beam-
forming to produce the output signal and we set the linear coeffi-

cients of the LCMV for the decoded attended and unattended talkers
to be 1 and 0 respectively. Since the goal of evaluation is to study
the behavior difference between the ‘hard’ (the AAD-LCMV ap-
proach)and ‘soft’ (the joint approach) approaches, we do not include
any other smooth transition procedure [22] for the AAD-LCMV.

4.1. EEG Data Pre-processing and Decoder Training

The EEG recordings are firstly down-sampled to 1000 Hz, and pro-
cessed by a denoising source separation (DSS) [23] approach to re-
duce noise and extract auditory components. A bias function defined
by filtering signals into a frequency band of interest (2-12 Hz) and
averaging over epochs is used to compute stimulus evoked response.
Based on DSS analysis of magnetoencephalographic (MEG) record-
ings, the auditory response components are mostly contained in the
first 6 DSS components and therefore we analyzed the first 6 com-
ponents in our experiment [24, 25]. During the experiment, a same
stimulus, e.g., a mixture of speech segments, was presented for 3
times, which we denoted as 3 trials. EEG time courses respond-
ing to the 3 trials of stimulus are averaged. The Hilbert envelope of
clean speech segment is band-pass filtered to 1-12 Hz, and down-
sampled to 50 Hz. The boosting algorithm is used to estimate the
decoder which is a linear mapping from response to speech enve-
lope [20, 21]. For each trial, the first 6 DSS components are chosen
to train the decoder by a 10-fold cross validation scheme.

4.2. Beamforming Setting

In the beamforming stage, a binaural hearing aid with two micro-
phones on each side is considered. Audio signals at microphones
are sampled at a 16 kHz sampling frequency and a 1024-point FFT
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(a) Trial 1. (b) Trial 2. (c) Trial 3.

Fig. 4. Performance on representative trials (Trial 1: almost being tracked; Trials 2 and 3: not being well tracked).

with 50% overlap is used in STFT (Hann window). Correlation ma-
trices {R(ω)} are estimated by sample averaging from a 5-second
noise only time period. Different from settings in [1], the sampling
rate of the reconstructed speech envelope is adjusted from 20 Hz
to 50 Hz, which achieves a smaller decoding error in the decoder
training stage (Section 4.1). To match the sampling rate of the recon-
structed speech envelope (50 Hz), beamforming output is down sam-
pled from 16 kHz to 50 Hz to represent function κ({w(ω)}). Both
the joint and AAD-LCMV approaches use the relative transfer func-
tions in equality constraints. To make the evaluation being consistent
over all trials and avoid the relative impact of reference microphone
selection, we present results that reference microphone is on the
unattended talker side. EEG signals with a time window of length
20 seconds is used to assist the beamformer design. In each adap-
tion, the time window is shifted every 2 seconds, followed by 10
iterations of GPM for updating {w(ω)} and α. The parameters µ is
fixed as µ = 100

∑
ω trace(R(ω)) and the initial value of α is set

as α1 = α2 = 0.5. Since the two approaches perform similarly if
γ is sufficiently large [1], we consider an extreme case that γ = 0
(no sparsity regularization) to study the their behavior differences.
Further, the Armijo rule [26] is used in GPM per iteration.

4.3. Results

To study the behavior of the two approaches of tracking the subjects’
switch under different EEG quality conditions, we select 4 trials with
high decoding accuracy (80% average decoding accuracy across tri-
als) and 8 trials with low decoding accuracy (63% average decoding
accuracy across trials).

The average parameter αk across time is compared in Figs. 2(a),
2(b), 3(a), and 3(b), where αk of AAD-LCMV corresponds to the
linear coefficients (0 or 1) used LCMV. The solid lines in figures
correspond to the mean values and the light regions represent the
standard deviation (which may exceed 0 ro 1) across trials. For the
joint approach, the switch is captured in both high and low decod-
ing accuracy cases, but with slightly longer time delay when com-
pared to the AAD-LCMV approach. Comparing the two approaches
in high and low decoding accuracy cases, the joint approach shows
robustness against raw AAD error and achieves much smaller vari-
ance of αk due to the joint optimization. We also remark that the
switch is quickly captured in the selected 4 high accuracy trials (as
shown in Figs. 2(a) and 2(b)) and the joint approach shows a slight
time delay. We then study the beamforming performance of the two
approaches in Figs. 2(c) and 3(c), where the IW-SIRI and IW-SD
are calculated for the latest 2 seconds beamforming output. Same
as in [1] on EEG database with fixed , the joint approach achieves

smaller variation among segments. Further, the AAD-LCMV ap-
proach achieves a little larger average IW-SIRI than the joint ap-
proach and similar IW-SD in high accuracy case. But in low accuracy
case, both approaches have similar average IW-SIRI and the joint ap-
proach significantly reduced speech distortion for the attended talker.

Finally, to understand the particular beamforming behavior of
the two approaches, we also present IW-SIRI and IW-SD of 3 repre-
sentative recordings in Fig. 4. When the decoding error rarely hap-
pens and the switch has been quickly decoded (Trial 1 in Fig. 4), the
joint approach consistently enhance the attended speech before and
after the switch. In the situation when the decoding error often hap-
pens (Trials 2 and 3 in Fig. 4), the joint approach performs soft en-
hancement of the attended speech. For the AAD-LCMV approach,
no matter the decoding error is small or not, it is very susceptible to
decoding error and produces large error in IW-SIRI and IW-SD.

In short, the joint approach seeks for a balance among robust-
ness against the decoding error and average performance. When the
decoding error rarely happens, the joint approach requires a little
longer time delay for tracking switch and slightly lose the aver-
age IW-SIRI performance. However, in low AAD accuracy case
which often happens in practice, the two approaches have similar
time delay for tracking switch and average IW-SIRI, but the joint
approach significantly reduces speech distortion for the attended
talker. Further, no matter the decoding accuracy high or low, the
joint formulation (soft decoding) has smoothed change of speech
sources which is very important for listening comfort.

5. CONCLUSION

In this study, we evaluated the joint auditory decoding and adaptive
binaural beamforming approach proposed in [1] on a EEG database
newly collected on listeners with switch in a noisy and reverberated
environment. Evaluation results confirm that the joint approach is
able to track the switch in real time. Compared with the AAD-
LCMV approach, the joint approach has shown robustness against
raw decoding errors and reduced speech distortion for the attended
talker. As part of the future work, we plan to extend the algorithm
to the complete binaural beamforming application, where two beam-
formers for two ears will be simultaneously designed with the assis-
tance of EEG signals. Design considerations in binaural beamform-
ing including the binaural cue preservation [2] will be included in
the optimization model.
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