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ABSTRACT This paper presents a novel method, referred to as locally linear detail injection (LLDI), for the
pansharpening problem, which is based on the assumption that the spatial details of eachmultispectral (MS)
band can be locally and linearly represented by the spatial details of panchromatic images. LLDI first exploits
such assumption through scales using the modulation transfer function (MTF) of the MS instrument and
then performs detail injections into the available low-resolution MS images. Visual analysis and quantitative
evaluation performed on QuickBird and WorldView-2 data sets at both reduced and full scales show that the
proposed LLDI achieves superior improvements over its baselines.

INDEX TERMS Remote sensing, image fusion, pansharpening

I. INTRODUCTION
Many GIS-based applications can benefit from high-
resolution multispectral (HRM) images. Due to physical
constraints, current optical Earth observation satellites, such
as QuickBird and WorldView-2, can only produce high-
resolution panchromatic (HRP) and low-resolution multi-
spectral (LRM) images simultaneously over the same areas
instead of providing multispectral (MS) images with both
high spectral and spatial resolutions. In response to the need
for HRM images in applications and also by utilizing the
complementary characteristics of HRP and LRM images,
pansharpening [1] has been proposed in the field of remote
sensing. As a typical image fusion technique, pansharpen-
ing is aimed at integrating the spatial details of a panchro-
matic (PAN) image into the LRM to produce HRM images.
Many pansharpening methods have been developed in

past decades, and they can be broadly classified into two
main classes: component substitution (CS) and multiresolu-
tion analysis (MRA). Methods of the CS class first trans-
form the LRM image into a new space, totally or partially
substitute one component with the histogram matched PAN
image, and then apply the inverse transform to obtain the
pansharped MS image. Representative methods of this class
are principal component analysis (PCA) [2] and intensity-
hue-saturation (IHS) [3]. Although these methods have
a relatively good performance in spatial detail enhance-
ment, they may suffer from severe spectral distortion.
To address this problem, variants, such as band-dependent
spatial detail (BDSD) [4], partial replacement adaptive

CS (PRACS) [5], and Gram-Schmidt adaptive (GSA) [6],
have been proposed by considering adaptive weights and
injection gains. However, spectral distortion may still occur,
especially in some local areas [7].

Methods of the MRA class inject spatial details extracted
from the PAN image into the upscaled MS image. Generally,
the spatial details are obtained by a multiscale decomposition
based on wavelet transformations, low-pass filtering (usu-
ally matched to the modulation transfer function (MTF) of
the sensor), or pyramid decompositions of the PAN image.
Some popular methods belonging to this class are high-
pass filtering (HPF), smoothing filter-based intensity modu-
lation (SFIM) [8], the generalized Laplacian pyramid with
context-based decision (GLP-CBD) [9]. The main advantage
of MRA methods is their spectral consistency with the MS
image. However, they may be unsatisfactory in terms of
spatial enhancement.

CS methods can provide fused results with high geomet-
rical quality of spatial details but with possible spectral dis-
tortion, whereas the MRA methods have a superior spectral
consistency with the original MS image. To incorporate the
advantages of these two classes, researchers have attempted
to design some hybrid methods. For example, Liao et al. [10]
proposed an image fusion framework, called guided filter
PCA (GFPCA), which applies a guided filter in the PCA
domain. Otazu et al. [11] proposed the additive wavelet lumi-
nance proportion (AWLP), which works in the IHS domain
by performing MRA of the intensity component. However, it
is difficult to obtain a tradeoff relationship between spatial
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enhancement and spectral consistency. Both CS and MRA
methods are also effectivewhen amultispectral(or hyperspec-
tral) image is the source of high spatial frequency. In that case,
the term ‘‘pansharpening’’ is replaced by the term ‘‘hyper-
sharpening’’ [12].

Some methods have been developed that cannot be
grouped into the above two classes. These exceptions are
based on a Bayesian framework, such as Bayesian Data
Fusion (BDF) [13], or are inspired by recently developed
theories in signal processing such as sparse representa-
tion (SR) [14] and total variation (TV) regularization [15].
They achieve competitive performances with classical CS
and MRA methods. However, they are inadequate in practice
due to their huge computational complexities and memories.
Here, we focus our study on improvements to the CS orMRA
methods, which are, in most cases, faster and more efficient
than SR- and TV-based methods.

In general, how to model the relationship of the spatial
details between the MS and PAN images is crucial to the
construction of theHRM images. However, exactly character-
izing this relationship is impossible due to the complexity of
imaging systems and environments. Considering the solvabil-
ity of the problem, it is reasonable to assume that there exists
a linear relationship characterizing the spatial details between
the PAN and MS image in a local region. Based on this
assumption, we propose a novel pansharpeningmethod called
locally linear detail injection (LLDI), in which the missing
spatial details of each MS band are estimated by exploiting
the local and linear relationships between spatial details of
each MS band and the PAN images. In addition, similarly
to [4], the local correlation coefficients are estimated at a
reduced scale by resorting to the scale invariance assumption.
The idea of LLDI is in contrast to traditional works [1] [6],
in which the locally or globally linear relationships between
PAN and MS band images were employed for the whole
original or degraded PAN and MS band images. Thus, the
main contribution of this paper is to exploit the locally linear
relationships in the frequency domain (or equally between the
details of the PAN and MS band images); refer to Section III
for more details.

The remainder of this paper is organized as follows.
Section II introduces some background about the observation
model and the general MRA framework. The proposed LLDI
method and experiments are presented in Section III and
Section IV. Finally, we draw conclusions in Section V.

II. BACKGROUND
In this paper, images are denoted by bold low-case letters, e.g.
x, and their elements are denoted with indexes such as x(i).
We use x to denote a high resolution image, ŷ to denote the
spatially blurred version of x, and y to denote the blurred
and downsampled version of x. Image symbols with the
superscripts ‘‘ms’’ and ‘‘pan,’’ such as xms and xpan, denote a
multispectral image and a panchromatic image, respectively.
The spatial details are denoted by bold low-case letters d
and with the subscripts ‘‘l’’ and ‘‘h’’ respectively denoting

the low- and high-resolution versions, e.g. d l and dh. And
symbols i and j indicate the ith and jth pixels, the index k
indicates the specific band of the multispectral image.

A. OBSERVATION MODEL
Let xpan be a PAN image with a high spatial resolution, and let
yms
k , k = 1, 2, · · · , n, denote n-band MS images with a low
spatial resolution over the same area. Pansharpening means
combining the PAN and MS images to obtain the MS images
xms
k (k = 1, 2, · · · , n) with a spatial resolution as high as that
of the PAN image.

The observed low-resolution MS band yms
k can be thought

of as a blurred and downsampled version of the high-
resolution MS band xms

k

yms
k = (xms

k ∗ fk ) ↓ r, k = 1, 2, · · · , n, (1)

where fk is the blurring filter caused by the optical imaging
system for the kth band, ∗ denotes the convolution operator,
and ↓ r refers to downsampling by a factor of r (typically 4).
Denote the spatially blurred version of xms

k , without down-
sampling, by ŷms

k , where we have

ŷms
k = xms

k ∗ fk , k = 1, 2, · · · , n. (2)

To simplify the estimation, we usually assume that ŷms
k can be

well approximated by an upsampled one of yms
k by interpola-

tion (e.g., bicubic interpolation).

B. THE GENERAL FRAMEWORK
An ideal high-resolution image can be seen as a composition
of its low- and high-frequency components. According to (2),
the high-resolution MS images can be rewritten as

xms
k = ŷms

k + d
ms
h,k (3)

where dms
h,k = xms

k − xms
k ∗ fk . Clearly, d

ms
h,k are the high-

frequency components of the kth HRM band xms
k . The high-

frequency components dms
h,k are also called the spatial details

of xms
k , as they are the differences between xms

k and its spa-
tially degraded version.

With this general model, the key to pansharpening is to
infer the spatial details dms

h,k from the known high-resolution
PAN image xpan and/or low-resolution MS images yms

k . How-
ever, it is extremely ill-posed, as infinitely many dms

h,k satisfy
model (1) and (3). Usually, we assume that the spatial details
can be estimated from the weighted high-frequency compo-
nent of the PAN image as

dms
h,k = gk (xpan − ŷ

pan), k = 1, 2, · · · , n, (4)

where gk is the injection gain corresponding to the kth band
and ŷpan is a low-resolution image which corresponds to the
low-frequency components of the PAN image.

Different ways of generating the low-resolution approxi-
mation of the PAN image yield the pansharpening methods
grouped into the CS or MRA classes. For the CS class, it
approximates the low-resolution PAN image ypan as an inten-
sity component Ims, which is a weighted linear combination
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of the upsampled MS bands, defined by

Ims
=

n∑
k=1

wk ŷ
ms
k , (5)

where wk , k = 1, 2, · · · , n are the weights. In contrast to
CS-based methods, the MRA class employs spatial filtering
of the PAN image to obtain its low-resolution version (with
the same size of the PAN image xpan), which is usually band
dependent and can be given by

ŷpank = xpan ∗ hk . (6)

where hk is the low-pass filter of the kth band.

III. LLDI
As mentioned above, the missing high-resolution spatial
details dms

h,k , k = 1, 2, · · · , n, may be inferred from the high-
resolution spatial details of the PAN image dpanh (usually
band-dependent dpanh,k , k = 1, 2, · · · , n). To this end, there
are two issues that need to be addressed: 1) how to extract
the high-resolution spatial details dpanh,k from the PAN image
such that they are most relevant to the missing spatial details
dms
h,k of the kth MS band and 2) how to model the relationship

between the spatial details dms
h,k and dpanh,k in a mathematical

form that is physically meaningful and readily solvable.
To extract the most relevant spatial details of each MS

band from the PAN image, the PAN image should be blurred
by the same low-pass filter as each MS band such that the
complementary high-pass filter can retain only the spatial
details of the corresponding MS band. However, the filter
matching of the real MTF of the MS sensor is unknown, and
its approximation remains a challenging topic. Fortunately,
the sensor gain at the Nyquist frequency is usually provided
by the sensor’s manufacturer, and thus, the real filter can be
reasonably approximated by a filter matched to the MS sen-
sor’s MTF (referred to as the MTF filter). The effectiveness
of the MTF filter has been justified by the BDSD [4] and
GLP-CBD [9]. Therefore, we also apply the MTF filter
to extract the band-dependent spatial details from the PAN
image.

Obviously, the relationship between the spatial details
dms
h,k and d

pan
h,k is nonlinear due to the complexity of imaging.

However, to be readily solvable and achieve fast implemen-
tation, it is common to make a linear approximation of a
functional relationship in a local region. Thus, we assume
that the spatial details dms

h,k of the kth MS band can be locally
and linearly represented by the spatial details dpanh,k of the PAN
image in a local window. Specifically, in a local window ωi
centered at the ith pixel, the gray values of the kth band spatial
details dms

h,k in the window ωi can be linearly represented by
the corresponding gray values of the spatial details dpanh,k of the
PAN image, i.e., for each pixel j ∈ ωi, we have

dms
h,k (j) = ak (i)d

pan
h,k (j)+ bk (i), (7)

where dms
h,k (j) and d

pan
h,k (j) are the gray values of the spatial

details dms
h,k and dpanh,k located at the jth pixel, ak (i) and bk (i)

are some linear coefficients and constants in the window ωi
for the kth MS band. If both dpanh,k and d

ms
h,k are known, we can

determine the linear coefficients by minimizing the following
objective function with respect to ak (i) and bk (i):

O =
∑
j∈ωi

[
ak (i)d

pan
h,k (j)+ bk (i)− d

ms
h,k (j)

]2
. (8)

Taking its partial gradients yield their optimal solutions as

ak (i) =
1
|ωi|

∑
j∈ωi ξh,k (j)

σ
pan
h,k (i)

, (9)

bk (i) = d̄
pan
h,k (i)− ak (i)d̄

ms
h,k (j), (10)

where

ξh,k (j) = dpanh,k (j)d
ms
h,k (j)− d̄

pan
h,k (i)d̄

ms
h,k (i), (11)

d̄
pan
h,k (i) and σ

pan
h,k (i) are the mean and variance, respectively,

of dpanh,k in ωi; d̄
ms
h,k (i) is the mean of dms

h,k in ωi, and |ωi|
denotes the number of pixels in ωi. Note that the value of
dms
h,k (j) in model (7) is not identical in all the overlapping

windows ωi that cover the jth pixel. To enforce compatibility,
similar to [16], we first average all the possible values of ak (i)
and bk (i) in the overlapped windows, and then calculate the
output by

dms
h,k (j) = āk (j)d

pan
h,k (j)+ b̄k (j), (12)

where

āk (j) =
1
|ωj|

∑
i∈ωj

ak (i), (13)

and

b̄k (j) =
1
|ωj|

∑
i∈ωj

bk (i). (14)

However, we can not obtain the local linear coefficients
āk (j) and b̄k (j) at the full scale since the high-resolution
spatial details dms

h,k are unknown and need to be estimated.
To estimate the coefficients āk (j) and b̄k (j), according to
the ARSIS concept [17], we resort to the scale invariance
assumption [4] [14], i.e. to perform parameter estimation at
a reduced scale of the spatial details. The spatial details of
the PAN image and the kth MS band at the reduced scale,
denoted by dpanl,k and dms

l,k , respectively, can be obtained by
simulating the same degraded process as that of the full-scale
counterparts, i.e.,

dpanl,k = ŷpank − ((ŷpank ↓ r) ∗ fk ) ↑ r, (15)

dms
l,k = ŷms

k − (yms
k ∗ fk ) ↑ r . (16)

where fk is theMTF filter of the kthMS band, ŷpank = xpan∗fk ,
and ↑ r refers to upsampling by a factor r . Then, we can
estimate the coefficients āk (j) and b̄k (j) by minimizing the
objective function O with the high-resolution spatial details,
dpanh,k and dms

h,k , being replaced by the corresponding low-
resolution counterparts, dpanl,k and dms

l,k , respectively.
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Algorithm 1 LLDI
1. Input: the high-resolution PAN image xpan and the low-

resolution MS images yms
1 , y

ms
2 , · · · , y

ms
n .

2. Upsampling: interpolate the MS images into the PAN
scale through bicubic interpolation and obtain the inter-
polated MS images ŷms

1 , ŷ
ms
2 , · · · , ŷ

ms
n .

• For the kth interpolated MS band ŷms
k do

3. Generation of low-resolution PAN image ŷpan by
filtering the original high resolution PAN image

ŷpank = xpank ∗ fk , (17)

where fk is the MTF filter of the kth MS band
and xpank obtained by the histogram matched to the
high-resolution PAN image xpan with the kth MS
band.

4. Detail extraction of low-resolution dpanl,k and dms
l,k

by (15) and (16)
5. Determination of linear coefficients ak (i) and

bk (i) by minimizing the following objective
function:∑

j∈ωi

[
ak (i)d

pan
l,k (j)+ bk (i)− d

ms
l,k (j)

]2
. (18)

6. Reconstruction of high-resolution details of the
kth MS band, dms

h,k , by (12).
7. Injection of the details dms

h,k into ŷ
ms
k :

x̃ms
k = ŷms

k + d
ms
h,k . (19)

• End for
8. Output: pansharpened MS images x̃ms

1 , · · · , x̃
ms
n .

Based on the above, the procedure of our proposed LLDI
method for pansharpening can be summarized as follows.

Some comments on the LLDI algorithm are noteworthy.

• It should be noted that the regression coefficient ak (i) for
the kth MS band seems to be the same as the injection
gain βk (i) calculated locally [6] [20]. However, they are
different. The regression coefficient ak (i) is employed
in the high-frequency space of the PAN and MS band
images in the window ωi, i.e.,

ak (i) =
cov(dms

ωi
, dpanωi )

var(dpanωi )
, (20)

where dms
ωi

and dpanωi are the values of the spatial details
dms
h,k and d

pan
h,k in the window ωi, while the injection gain

βk (i) exploited such linear relationships in the original
pixel value space of the PAN and MS band images, i.e.,

β(i) =
cov(yms

ωi
, ypanωi )

var(ypanωi )
(21)

where yms
ωi

and ypanωi are the pixel values of the yms
h,k

and ypanh,k in the window ωi. The injection gain ak (i) is

particularlymore effective than the gain setting βk (i) due
to the greater variability of high spatial frequencies.

• Similar to the work [4], we also want to ‘‘discover’’
the true detail by exploit the relationship of the high-
resolution spatial details through scales. In other words,
the high-resolution details dms

h,k have been reconstructed
by locally modeling the linear relationships between the
high-resolution details dms

h,k and dpanh,k , while the esti-
mation of coefficients is performed at a reduced scale.
Additionally, the MTFs of the imaging systems are
considered when the low-resolution PAN image ŷpank is
generated. In this way, the scale invariance assumption
holds such that the coefficients āk (j) and b̄k (j) can be
learned at the degraded scale.

• According to the procedure of the LLDI algorithm, we
can rewrite the fusion rule of LLDI as

x̃ms
k = ŷms

k + d
ms
h,k (22)

= ŷms
k + āk (x

pan
k − ŷ

pan
k )+ b̄k (23)

where āk and b̄k are composed of elements of
āk (j) and b̄k (j), respectively. Note that the constant
coefficients b̄k computed in the high spatial frequency
domain are expected to be near to zero when the linear
regression model is applied on the whole image, since
the filtered output of the PAN and MS images have
the same mean of the original. However, b̄k cannot be
zero when the linear regression model is applied in a
local window. Refer to the experimental results for more
detailed analysis. This fusion rule is similar to [6] in that
the constant parameters b̄k are introduced to consider
both the spectral gaps between the PAN and MS sensors
and the stabilization of the model at different spatial
scales. Additionally, the locally linear model for approx-
imating the relationship between the PAN and MS band
images can be seen as an approximation of the nonlinear
model, as noted in [21].

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we first apply the proposed LLDI algorithm
to two data sets to provide some intuition about how the
LLDI model functions, and then, experiments on two other
data sets are performed both at reduced and full scales. The
fusion results obtained by our proposed LLDI are compared
to those of several well-known methods such as BDSD [4],
GSA [6], GLP-CA [9] [20], PRACS [5], and the recently
proposed nonlinear IHS (NLIHS) method [21].1 The param-
eters of each method are manually tuned to achieve the best
performance. Note that the LLDI, BDSD, andGLP-CAmeth-
ods consider the MTF of the MS instrument, and both the
GLP-CA and LLDI methods employ the local injection gains
but are calculated in different spaces.

1The codes of all the pansharpening methods have been
collected in a MATLAB toolbox, which can be downloaded at
http://openremotesensing.net/index.php/codes/11-pansharpening.
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FIGURE 1. The displays of (a) the PAN image, (b) the EXP, (c) the fused image by LLDI, (d) the reconstructed spatial details by LLDI, (e) the
injection gains ak (i ) calculated in the frequency space, (f) the injection gains βk (i ) in the pixel value space, (g) the gain magnitudes
of ak (i ) (red lines) and βk (i ) (blue lines) for 100 randomly selected pixels, and (h) the constant coefficients bk (i ) for LLDI.

Four data sets collected by the QuickBird and
WorldView-2 satellites have been used for testing and anal-
ysis. All the MS images are 128 × 128 pixels, whereas the
corresponding PAN images are 512 × 512 pixels. The MS
image acquired by QuickBird contains four bands, i.e., blue,
green, red, and near-infrared (NIR), and its spatial resolution
is 2.8 m, while the spatial resolution of the PAN image is
0.7 m. The WorldView-2 satellite can provide a PAN image
with a spatial resolution of 2 m and an MS image at a
spatial resolution of 0.5 m, where the MS image has eight
bands, including 4 traditional bands (red, green, blue, and
NIR1 bands) and 4 new bands (coastal, yellow, red edge, and
NIR2 bands).

A. TOY EXAMPLES
In this subsection, we apply the LLDI algorithm to two data
sets collected by the QuickBird and WorldView-2 satellites
to analyze how and why the LLDI model works. The first
data set was collected by the QuickBird sensor, where the
PAN image is shown in Fig. 1(a), and the original MS
image expanded to the scale of the PAN image is reported
in Fig. 1(b). In general, the expanded MS image, refereed
to as EXP, is assumed as the reference in the visual evalu-
ations. Another data set was collected by the WorldView-2
satellite, and the PAN image and the EXP image are shown
in Fig. 2(a) and (b), respectively. It can be observed from these
figures that the land-cover types of the two test data sets are
mainly buildings (houses and roads) in the QuickBird data

set and vegetated area (trees and grasses) in the WorldView-2
data set.

The fusion results by LLDI are shown in Fig. 1(c) and
Fig. 2(c). From these figures, we can find that the proposed
LLDI demonstrates an excellent performances in terms of
improvement in spatial quality and the preservation of the
spectral quality of the original MS images. In addition, the
high-resolution spatial details (corresponding to the high-
frequency component) dms

h,k , k = 1, 2, · · · , n, for the MS
images are properly recovered; refer to the color compos-
ites of the high-resolution details reconstructed by LLDI
shown in Fig. 1(d) and Fig. 2(d). In addition, Fig. 1(e)-(f)
and Fig. 2 (e)-(f) report the injection gains calculated by
LLDI in the frequency space, ak (i), and that calculated in the
pixel value space [9] [20], βk (i), respectively. It can be seen
from the figures that the inject gains ak (i) are more unstable
than the inject gains βk (i), especially in some dark areas.
This may be enrich the variation of the representation of the
LLDI. Fig. 1(g) and Fig. 2(g) report the injection gains ak (i)
(red lines) and βk (i) (blue lines) of 100 randomly selected
pixels for the red, blue, green and NIR MS bands. We can
see that the injection gains ak (i) and βk (i) follow a similar
trend overall but exhibit some subtle and/or large differences
for some pixels. The constant coefficients bk (i) are shown
in Fig. 1(h) and Fig. 2(h). The injection gains ak (i) and the
constants coefficients bk (i) let their locally linear represen-
tations, i.e. the reconstructed details as shown in Fig. 1(d)
and Fig. 2(d), have the most relevant spatial details of each
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FIGURE 2. The displays of (a) the PAN image, (b) the EXP, (c) the fused images by LLDI, (d) the reconstructed spatial details by LLDI, (e) the
injection gains ak (i ) calculated in the frequency space, (f) the injection gains βk (i ) in the pixel value space, (g) the gain magnitudes
of ak (i ) (red lines) and βk (i ) (blue lines) of 100 randomly selected pixels, and (h) the constant coefficients bk (i ) for LLDI.

TABLE 1. The minimum value (Min.), maximum value (Max.), mean value (Mean), and standard deviations (Std.) of the gains βk (i ), ak (i ) and the constant
coefficients bk (i ) for different MS bands in the toy example experiments.

MS band extracted from the PAN image. And the minimum
value, maximum value, mean value, and standard deviations
of the gains βk (i), ak (i) and the constant coefficients bk (i) for
differentMS bands in the experiments are reported in Table 1.
From these figures and table, we can further confirm that the
differences between the injection gains ak (i) and βk (i) due to
the different ways of calculating, and that the introduction of
constant coefficients bk (i) combined with the injection gains
ak (i) better facilitates the reconstruction of the spatial details
and highlight the high-frequency details (such as edges) due
to their compensating roles for spectral gaps. In addition,
from table 1, it is very interesting to find that the mean
values for the constant coefficients bk (i) are near to zero in

the case of QuickBird, with positive and negative scores for
different bands, while the mean values of bk (i) in the case
of WorldView-2 are all positive. This may due to that there
are large ocean areas in the WorldView-2 data set and the
constant coefficients bk (i) of the pixels in the ocean areas are
positive.

The toy example reveals two interesting points.
• The proposed LLDI method has a good performance
both in improving the spatial qualities and in preserving
the spectral qualities of the original MS images.

• The injection gains ak (i) calculated by the spatial details
are particularly effective due to the greater variability of
high spatial frequencies.
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FIGURE 3. The displays of (a) the degraded PAN image, (b) the original MS image (reference), and the fused images obtained by the (c) GSA,
(d) BDSD, (e) PRACS, (f) GLP-CA, (g) NLIHS, and (h) LLDI methods for the QuickBird data at reduced scale.

B. EXPERIMENTS AT REDUCED SCALE
In this subsection, experiments are conducted at a reduced
scale, i.e., following the protocol of Wald [18] where the
original MS and PAN images are first degraded by Gaussian
filters, with the gains at the Nyquist frequency being the
same as those of the sensors for the MS and PAN images,
and by decimating with a factor equal to the resolution ratio.
Then, the degraded MS images are sharpened back to the
original resolution, and the original MS images are regarded
as references. Four reference-based quality indices [1],
i.e., the correlation coefficient (CC) [22], Q4 [23], the
spectral angle mapper (SAM) [24], and relative dimen-
sionless global error in synthesis (also called Erreur Rel-
ative Globale Adimensionnelle de Synthése: ERGAS) [25],
have been adopted to quantitatively evaluate the perfor-
mances of the different methods. The closer the RMSE,
SAM, and ERGAS indices are to zeros, the better the pan-
sharpening performances, whereas the closer the CC and
Q4 indices are to 1, the higher the qualities. Another two
comparison-based quality indices recently proposed in [26],
i.e. comparison-based quality (CQ) and comparison-texture-
based quality (CTQ), are used to measure the relative qual-
ity with two fused images obtained by our LLDI method
and another existing one. CQ and CTQ indices have two
input images I1 and I2 and can indicate the relative quality
of image I1 based on I2. A positive score of CQ or CTQmeans
image I1 is better than the base image I2 while a negative
score of them means the image I1 is worse than the base
image I2.

1) VISUAL COMPARISON
Fig. 3 shows the degraded PAN image, the original MS image
(reference), and the pansharpening results for the QuickBird
data set at reduced scale. Except for the degraded PAN image
as shown in Fig. 3(a), each display is a composite of the red,
blue and green MS bands. By comparing the results obtained
by PRACS, as shown in Fig. 3(e), with the reference image,
as shown in Fig. 3(b), we can see that spectral distortions
are clearly visible in the green areas. Concerning the fusion
results of the NLIHS, which is shown in Fig. 3(g), there
are also slight spectral distortions, especially for the trees.
Although the spectral fidelity of the results of the GSA and
BDSD methods, as shown in Fig. 3 (c) and (d), respectively,
is impressive, they appear less sharp due to a lack of injection
of the spatial details from the PAN image. In this case, as
shown in Fig. 3(f) and (h), the results obtained by the
GLP-CA and those by our proposed LLDI method can pro-
vide visually satisfactory results with respect to the refer-
ence MS image due to their performance in recovering local
features [20]. Through a visual analysis of the edges of the
buildings, we can find that the proposed LLDI method can
extract more high-frequency spatial information from the
PAN image than can the GLP-CA method.

2) QUANTITATIVE COMPARISON
Table 2 reports the quantitative results of different methods
at the reduced scale on the QuickBird and WorldView-2 data
sets. Note that the best result for each quality index of the dif-
ferent methods is denoted in bold font. As we can see from the
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TABLE 2. Quality indices of different methods at reduced scale.

TABLE 3. CQ and CTQ indices at reduced scale with the fused image by LLDI as the base image.

FIGURE 4. The displays of (a) the PAN image, (b) the original MS image expanded to the size of the
PAN image (refereed to as EXP) for the WorldView-2 data.

table, our proposed LLDI method scores the best in terms of
all four indices on both data sets. For the QuickBird data set,
the PRACS yields much higher values of the Q4 index than
do the GSA, BDSD, and NLIHS methods. This can be evi-
denced from the visual comparisons of spatial details among
Figs. 3(d)-(f). When considering the CC and SAM indices,
the values of GLP-CA, GSA, and BDSD are close to each
other and are better than those obtained by the PRACS and
NLIHSmethods. The quantitative results confirm the conclu-
sions drawn from the visual analysis. For the WorldView-2
data set, the BDSD, PRACS, and LLDI algorithms achieve
similar performances in terms of CC and Q4 values. In addi-
tion, our proposed LLDI method achieves a slightly better
result compared to the other two methods in terms of the
ERGAS index and presents a significant improvement in
terms of the SAM index. The CQ and CTQ indices with the
image fused by our proposed LLDI method as the base image
are reported in Table 3. From this table, we can see that all
the CQ and CTQ indices are negative, which means that our
results are better than the others.

C. EXPERIMENTS AT FULL SCALE
The quantitative quality assessment of the results at the
full scale is difficult because reference high-resolution MS

images are not available. Fortunately, there are indexes that
do not need reference images, such as the quality with no
reference (QNR) [19], which consists of a spectral distortion
index Dλ and a spatial distortion index Ds. The closer the
Dλ and Ds indices are to zero, the better the pansharpening
performances, whereas the closer the QNR index is to 1, the
higher the qualities.

1) VISUAL COMPARISON
The high-resolution PAN image and the low-resolution MS
images (expanded to the size of the PAN image, refereed to
as EXP) collected by the WorldView-2 satellite are shown
in Fig. 4(a) and (b). However, it is difficult to visually analyze
an image as large 1024×1024 pixels. Therefore, small details,
located in the purple rectangle, as shown in Fig. 4(a) and
with a size of 200× 200 pixels, are shown in Fig. 5 to better
facilitate visual inspection. According to this figure, we can
find that the BDSD and PRACS methods have a little sharper
results than LLDI in some local area such as the grids in the
white triangle structures on the left, while they suffer from
spectral distortions in the roofs of the buildings and roads
(see Fig. 5(d) and (e)) and exist spatial distortion in some
other areas, leading to their spatial and spectral indexes worse
than the proposed LLDI (see Table 4). Although the GSA and
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FIGURE 5. The subset displays of (a) the PAN image, (b) the original MS image expanded to the size of the PAN image (refereed to as EXP), and the
fused images obtained by the (c) GSA, (d) BDSD, (e) PRACS, (f) GLP-CA, (g) NLIHS, and (h) LLDI methods for the WorldView-2 data at full scale.

GLP-CA methods achieve high spectral and spatial qualities,
some important spatial details are lost when comparing them
with our proposed LLDI method. Comparing Fig. 5(c) and (f)
with Fig. 5(h) on the edges of the roads and buildings, the
results of the GSA and GLP-CA methods are less sharp than
are those of our proposed LLDI method.

2) QUANTITATIVE COMPARISON
The objective quality indices of the fusion results at full scale
are reported in Table 4. As listed in this table, the proposed
LLDImethod produces the best results in terms of the spectral
distortion index Dλ, the spatial distortion index Ds, and the
QNR index among all the compared methods. The NLIHS
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TABLE 4. Quality indies of different methods at full scale.

TABLE 5. CQ and CTQ indices at full scale with the fused image by LLDI as the base image.

method yields comparable results in the preservation of spec-
tral qualities with respect to the LLDI method on both the
QuickBird andWorldView-2 data sets. This is in line with the
above visual analysis. The low values of the spatial distortion
index Ds confirm that the NLIHS method is limited in terms
of enhancing the spatial qualities. According to the QNR
index, the GLP-CA is slightly worse than our proposed LLDI
method, but the former outperforms the other four methods,
i.e., GSA, BDSD, PRACS and NLIHS. In terms of the spatial
distortion index Dλ in Table 4, the LLDI outperforms the
other methods on both data sets. The BDSD and GLP-CA
methods perform similarly to each other and slightly better
than the PRACS method. And the negative scores of CQ
and CTQ, reported in Table 5, also indicate the better per-
formances of LLDI than the others.

V. CONCLUSION
In this paper, a novel method, referred to as locally linear
detail injection (LLDI), is proposed for the pansharpening
problem. The LLDI method exploits the relationship between
the spatial details of the PAN image and those of the MS
images, which is formulated as a locally linear model. Based
on the scale invariance assumption, the estimation of coef-
ficients is performed at a reduced scale. In contrast to tra-
ditional methods, the injection gains are calculated in the
frequency space. Due to the greater variability of high spatial
frequencies, the proposed LLDI methods are expected to be
very effective in extracting the spatial details from the PAN
image. The LLDI method is tested on two data sets acquired
by QuickBird andWorldView-2 and is compared with several
well-known methods. The experimental results demonstrate
that our proposed LLDI method can produce results exhibit-
ing promising spectral preservation and satisfactory spatial
quality.
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