Adaptive Efficient Coding of Correlated Acoustic Properties
Published in Journal of Neuroscience, 2019
Abstract
Natural sounds such as vocalizations often have covarying acoustic attributes, resulting in redundancy in neural coding. The efficient coding hypothesis proposes that sensory systems are able to detect such covariation and adapt to reduce redundancy, leading to more efficient neural coding. Recent psychoacoustic studies have shown the auditory system can rapidly adapt to efficiently encode two covarying dimensions as a single dimension, following passive exposure to sounds in which temporal and spectral attributes covaried in a correlated fashion. However, these studies observed a cost to this adaptation, which was a loss of sensitivity to the orthogonal dimen- sion. Here we explore the neural basis of this psychophysical phenomenon by recording single-unit responses from the primary auditory cortex in awake ferrets exposed passively to stimuli with two correlated attributes, similar in stimulus design to the psychoacoustic experiments in humans. We found: (1) the signal-to-noise ratio of spike-rate coding of cortical responses driven by sounds with corre- lated attributes remained unchanged along the exposure dimension, but was reduced along the orthogonal dimension; (2) performance of a decoder trained with spike data to discriminate stimuli along the orthogonal dimension was equally reduced; (3) correlations between neurons tuned to the two covarying attributes decreased after exposure; and (4) these exposure effects still occurred if sounds were correlated along two acoustic dimensions, but varied randomly along a third dimension. These neurophysiological results are consistent with the efficient coding hypothesis and may help deepen our understanding of how the auditory system encodes and represents acoustic regularities and covariance.
Publication
Kai Lu, Wanyi Liu, Kelsey Dutta, Peng Zan, Jonathan B Fritz, and Shihab A. Shamma. (2019). "Adaptive efficient coding of correlated acoustic properties." Journal of Neuroscience. 39(44):8664–8678. Download Paper